

HTML Primer

Table of Contents

Getting Started ...3
Content on a Web Page..4

What do we know so far?...5
Elements versus Attributes ..5
Text is not a simple matter of Typing..7
Comment Tags are Essential..9
A Word about Fonts...10
The Anchor Tag ...11

The link to another web page on the same server..11
The link to another web site...12
The named anchor tag..12
A general note about links ...13

The Image Tag is really a Link ..14
Different Image Types ...15

Tables Arrange the Text...16
A Table of Data..16
Laying it all out with Tables ..18

Hexadecimal Code ...20
Rule of 51’s..21
Accessibility for Web Sites..22
Advanced Topics ...22
Example HTML File – Simple ..27
Example HTML File – Lists ..29
HTML Code Listing ..32

2 of 45

HTML Primer

Getting Started

The following document will describe the basics of the Hypertext Markup Language and
list the tagging elements and their attributes. This primer follows the HTML 4.0 and
XHTML Standard established by the World Wide Web Consortium (W3C:
http://www.w3c.org).

Every web page starts and ends with the start and end tag, respectively, for an HTML
Document; <html> and </html>. These tags must be present to signal the web
browser that information located between the tags must be translated by the HTML
tagging code that appears in the text document. Current XHTML requirements stipulate
that the HTML code should be in lower case.

The HTML document is divided into 2 main sections, the head section and the body
section. The tags <head>, </head>, <body>, and </body> delineate these sections and
are placed between the start HTML tag, <html>, and the end HTML tag, </html>.

Only text that appears between the start and end body tags will actually appear in the web
browser window. Information placed in between the start and end head tags will define
general information for the browser. For example, the start and end title tags, <title>
and </title>, will place any text between these tags in the window title bar at the top of
every browser window. The header portion of the web page code is also appropriate for
JavaScript tags, Meta tags, and Link tags which are described in another section of this
document.

Of the 4 tags described so far, all are considered to be elements of the web page code.
Elements can have attributes which define certain parameters of the web page. The only
element of the 4 described so far that has attributes is the body tag. The attribute of a tag
always appears in the start tag. For example, one of the attributes of the body of a web
page that can be altered is the background color. In the code below, the body tag defines
the background color to be red.

 <body bgcolor=”red”>

</body>

There is another means of defining color for any attribute that alters the color of the web
page, the text on that page, or the borders around objects. By inserting the hexadecimal
code for the color to be displayed, there is greater control over the color being displayed.
The term “red” might be interpreted differently by different operating systems, different
computer platforms, and different browsers. Defining the color more accurately by the

3 of 45

http://www.w3c.org/

hexadecimal code will make certain that the only way a user will see something other
than the color you intended is if their monitor is not displaying color correctly. Consult
the section labeled “Hexadecimal Code” to learn more about color definition, but for now
accept that the color “red” can be displayed with the hexadecimal code: “#ff0000.” So
the attribute definition would change to, <body bgcolor=”#ff0000”>.

Content on a Web Page

A web page is nothing more than a page of information intended for the visitor to read
and navigate to additional information. This information or content is separated into
paragraphs much like the content in this primer. To signal to the browser that you want
blocks of content separated into paragraphs you use the paragraph start and end tag; <p>
& </p>. Please refer to the section “Example HTML File – Simple” to see the
implementation of this tag.

There are other elements similar to the paragraph tag that automatically determines the
layout properties of the text placed within the tags. An excellent example of this is the
headline tag. There are six to choose from, numbered from 1 to 6. The largest headline
tag is <h1> </h1> and will automatically separate the text between the start and end tags
from the rest of the text on the web page. The text will be increased in size from the rest
of the web page text and will be bold. Headlines are meant to be headings or
subheadings in a document. You should always use them in sequence meaning that <h1>
</h1> is always first followed by <h2> </h2> etc. This will assist screen reader
software in organizing the page for a person that cannot view the web content directly.
Mixing the order of the headline tags will result in confusion for both groups of users, the
sighted and un-sighted. View the section “Example HTML File – Simple” to see
implementation of this tag.

Another excellent example of elements that define the layout of text on a web page is the
list tags. There are several different types of list tags. The ordered list tag, ,
causes list items to be automatically numbered and spaced in outline format on the web
page. The list items are defined with the tags. The other option for listing
items is with a bulleted list known in HTML code as the unordered list, .
Again the tag is used to indicate the items in the list. The web page author
can also generate a definition list, <dl> </dl>, containing definition terms, <dt> </dt>,
and definition definitions, <dd> </dd>.

Often a visual separation between content or features on a page can be achieved with a
horizontal ruler (or line) that runs from the left to the right margin of the web page. The
<hr> tag places a horizontal ruler (or line) across the page. It is also our first example of
a tag that has no end tag, only a start tag. Because of this the proper way to designate an
<hr> tag is with the end tag, forward slash at the end of the tag label, <hr />. Doing so
means that your coding will follow the current convention of XHTML standards. It is
important because it is possible that your web pages will not display properly as newer
browsers are no longer compatible to former standards. The tag <hr> will still display a

4 of 45

horizontal ruler, but it might not in the future. Also the <hr /> tag will pass HTML
validator and accessibility web sites such as Bobby. The <hr /> will separate the text
above and below it with one line of space.

What do we know so far?

Well, we know that each and every web page starts with the <html> tag and ends with the
</html> tag. Everything in between is read by the browser to be a web page and is
decoded appropriately. The <head> tag contains the <title> </title> tags and other
tags yet to be mentioned. The <body> start tag follows the end tag, </head> and can
contain attributes. Page layout and formatting elements include <p> </p>, ,
 , and <dl></dl>.

Elements versus Attributes

Every HTML document contains tagging elements that indicate to the browser how to
display the content included in the HTML file. These elements form two broad
categories; layout elements and text formatting elements. Layout elements predefine how
the text will be arranged on the page. For example, the paragraph tag <p> </p> tells the
browser to separate the text between the start and end tag from any previous or following
content. The text itself does not carry a special font or color.

Text formatting elements like do not tell the browser how to
arrange the text on the page but describe certain features to be applied to the text. For
example, the weight of the text can be altered from the page default of “normal” to
“strong” for emphasis. In this case, causes the text to be bold in
appearance and the tagging element cause the text to be italicized. Other
examples include the superscript tag, , and the subscript tag, <sub>
</sub>.

In the past, bold text was coded for by the tag and italicized text was coded for
by <i> </i> but these tags have been deprecated. A deprecated tag is nothing more than
a tag that has been discontinued and in the future will not likely work with newer
versions of browsers. The reason some HTML tags have been deprecated is that tags like
the bold tag, , were quick conventions in earlier versions of HTML code that
enabled the coder to format the text. Tags have been deprecated primarily because they
no longer format text in a method that enables the content to be separated from the
formatting of the text, and it is important to not use tags that the World Wide Web
Consortium have ceased to authorize.

The latest version of HTML straightens out the language and moves us to a modern
approach of page layout and text formatting. In essence HTML 4.0 is about separating
the formatting and layout of content from the content itself. For example, in this text
presenting this information covering the basics of HTML, there is the letters that make up

5 of 45

the words that make up the text. Then there is the separation of groups of words into
sentences and sentences into paragraphs, a transition from the content to the layout. The
style or formatting of the text has been changed to differentiate HTML Code from the
rest of the text. While the content doesn’t change, the formatting of the text plays an
important role in the display of the content and, therefore, is a means of communicating
information.

The information that we display electronically through a web page can be separated into
the content, the formatting, and the layout allowing different browsers, operating
systems, and platforms to display that information in a means relevant to each instance.
This development means that a developer can code the content once and enable different
devices such as a desktop computer, cell phone, and personal data assistant to all access
the same content, but the layout and formatting codes differ to handle the content for each
specific device. This will also allow people with physical and learning disabilities to
access the same content using devices that enable them to interface with the content. See
the section on “Accessibility for Web Sites” to learn more about this.

There are other tags used for formatting text including the tag. This tag
uses attributes inside the tag to describe a specific version of the tag. We mentioned
another attribute called bgcolor=”” when we spoke about color. Nearly every tagging
element, layout or formatting, has one or more attributes that can be placed inside the
start tag to further control the display properties of the tag. The tag has three
attributes; color=””, size=””, and face=””. The color attribute, color=””, defines the
color of the text that appears between the start and end tags. You would use the
hexadecimal color code described in a previous section.

The attribute that changes the size of the text relative to the rest of the text on a web page
is the size=”” attribute. In this attribute there are two ways to define the size. You can
define the font size using the values 1, 2, 3, 4, 5, 6, or 7. The value “3” is the default size
used by the browser to display the text in the browser window so defining a value of
three will result in no obvious change compared with the text found outside of the font
tag. To make the font size smaller you specify a value of “1” or “2.” To increase the font
size specify a value of “4”, “5”, “6”, or “7” with “7” being the largest that you can
increase the font size.

The face=”” attribute is a little harder to explain, but can be extremely effective when
formatting text. The attribute face=”” refers to the look of the font, in this case the font
itself. The font used in this document for the main content is “Times New Roman.” The
face=”” attribute is used to make a change in the text font from the default use by the
browser for any text located between the font tags. Care must be applied when selecting
a font because the font will only appear the way you code for it if the viewer has the same
font. For example, I could set the attribute to display the “Arial” font, face=”Arial”. If
the computer I am developing the web pages on has the font, then I will see the text
between the font tags changed to Arial when displayed in the browser. If I then post
those pages on the Internet and view them using a computer connected to the Internet that
does not have the Arial font, then the text between the font tags will not appear different

6 of 45

from the default font used for all of the text. See the section on “A Word about Fonts” to
learn more about this.

One of the nice things about attributes is that you can place as many as you want in the
same start tag so you do not have to repeat a start tag to apply a different attribute. For
example, with the tag you can place the attributes face=””, color=””, and
size=”” inside the one start tag.

You cannot place more than one reference to a single attribute in the same tag, however.
In essence the browser would be getting two commands for the same thing, and the
browser will ignore one attribute and use the other. For example, the code below will
result in a red text color and not the blue color specified in the first color attribute.

Text is not a simple matter of Typing

One of the problems with a tagging code for presenting content is that the tag itself is
coded for by text. This means that there are a few characters and letters that cannot be
typed directly into the code of the HTML file. For example, the “less-than” sign, “<”,
cannot be represented in text with out coding for the ASCII character. This is because
when the browser sees the “less-than” sign, it is triggered to expect a tag. If it does not
receive a “greater-than” sign, “>”, it will assume all of the text following a “<” is a tag.
The only way around this is to represent the “less-than” sign with its code equivalent so
that the browser will display it as text. In this case the code for the “less-than” sign is:
“<”. The ampersand tells the browser to interpret the code that follows as an
ASCII text character. The pound sign identifies it as a hexadecimal number and the
number specifies the character. The whole thing is ended with the semi-colon so that the
browser returns to normal interpretation of the content for display.

There are a lot of these special characters and you must code for them with either the
hexadecimal code or a name abbreviation that is available for some of the characters.
The abbreviation is usually some word or group of letters that when placed between the
ampersand and the semi-colon tells the browser what ASCII character to display. See the
table below for a list of essential characters that need this special treatment if you want to
display them in the content of a web page.

Character ASCII
Code

Abbreviation Character ASCII
Code

Abbreviation

< < < > > >

“ " " ‘ ' '

& & & ~ ~

7 of 45

- - ­

$ $ – – –

% % — — —

* * _ _

((\ \

)) / /

! ! | |

(space) ˆ ˆ ˆ

@ @ ` ` `

+ + ´ ´ ´

± ± ± ¨ ¨ ¨

¿ ¿ ¿ ˜ ˜

¡ ¡ Iexcl ™ ™ ™

‰ ‰ ‰ © © ©

ƒ ƒ ƒ ® ® ®

¥ ¥ ¥ ° ° °ree;

€ € € « « «

£ £ £ » » »

¢ ¢ ¢ µ µ μ

¤ ¤ ¤ ² ² ²

¶ ¶ ¶ ½ ½ ½

An example of an implementation of the copyright symbol, which is common on web
pages, is below:

All content is copyrighted and all rights reserved, 2004©

One of the great things about ASCII text is that you can code for accented letters that are
essential for certain words or the pronunciation of certain words. For example, the word
café is accented with a mark above the letter “e” and the word should always appear with
an accent. In word processors such as MS Word, the auto-correcting features of the
software, like spell check and grammar check, automatically add this accent for me after
typing the word. If you are using a different word processor or this option is turned off,
you can add the accented “e” by going into one of the start menu and adding or inserting
a character or symbol. In MS Word, I use the Insert Menu, select the Symbol Option and
the Symbol Window appears. I can then select the unique character to add.

To perform this feat in a page of web content, I must code specifically for the accented
character. The sentence, “I ate at a small café in the airport,” would be coded as below to
appear the same on a web page:

 I ate at a small café in the airport.

See the table below for a list of accented letters and the code to use to have them
displayed in a web page properly.

8 of 45

Character ASCII
Code

Abbreviation Character ASCII
Code

Abbreviation

à à à î î î

á á á ï ï ï

â â â ñ ñ ñ

ã ã &altilde; ò ò ò

ä ä ä ó ó ó

å å å ô ô ô

æ æ æ õ õ õ

ç ç &ccedit; ö ö ö

ð ð ð ø ø ø

è è è ù ù ù

é é é ú ú ú

ê ê ê û û û

ë ë &emul; ü ü ü

ì ì ì ý ý ý

í í í ÿ ÿ ÿ

Comment Tags are Essential

Often when coding a web page a section of the code can be commented with text that is
not intended to be displayed for the reader. In this case it is important to include a tag
around the text so that the browser will know to ignore the text between the tags. This is
referred to as “commenting out” text and is performed with the tag <!-- -->. Any text
placed between the less-than-exclamation-point-dash-dash and the dash-dash-greater-than
characters is commented out.

The comment tag can be used for a variety of purposes. First, you should comment the
code in your web page HTML document so that you know what sections in the code are
for what sections on the web page. This will make it easy to trouble shoot the problems
that you are experiencing when the web page does not display properly. You will be able
to go directly to the section of code that is the problem. Refer to the section “Example
HTML Files” at the end of this document for examples.

You can also place the comment tag at the beginning and end of a section of the web
page that you want to remove temporarily. This is very valuable when trouble-shooting a
specific line of code or section of code that might not be working properly or might be
influencing the document in a strange way. Removing the section with comment tags
means the browser will ignore everything in between. Doing this also means you will not
have to re-type a lengthy section of code.

You can also use the comment tag as part of several people working on the same pages or
web site. The comment tag could direct an individual to place content in a specific place,

9 of 45

other coding elements, or perhaps provide a place holder for future graphics that you do
not want to appear yet on the web page.

I often use the comment tag to hide repetitive lines of code that I use in a single page so
that I can copy-and-paste them into the web page repeatedly. The advantage is that I will
not have to retype the code and I can hide multiple or incomplete examples of code from
being expressed by the browser.

Programmers and coders will tell you that it is essential that you mark your code with
comment tags. These stand as reminders of the value of a line of code within the
program. The same is true for web pages. You might forget why a line of code is placed
in the document and the comment tags serve as a reminder. Also, when others take over
the job of revising and updating your web page, the comment tags will remain there to
explain what, where and how you did something within the web page. Refer to the
section “Example HTML File – Advanced” at the end of this document to see examples
of this.

A Word about Fonts

The look of a font can be a powerful means of communicating information and
facilitating the reader. Studies have shown that reading speed and comprehension
increases when using a serif font. A serif font is a font that has frills, enders, tails, serifs,
whatever you want to call them, on the letters. The font you are reading here is a serif
font called Times New Roman. Arial is an example of sans-serif (without serif) and
this sentence has been altered to appear in the Arial font. When looking at
identical letters between a serif and a sans-serif font face, you can readily see the serifs
that appear in the letters. Researchers agree that the serif part of each letter
communicates additional information that improves reading speed enabling readers to
skip portions of a letter or word in the decoding process of the brain. The Arial font by
comparison is fairly common from one letter to another and slows the readers speed
down.

Publishers and researchers have indicated that the content of a passage should be in serif
fonts and that headings and sub-heading section titles are best presented in sans-serif
fonts where the reader must slow down to read the section titles.

Another important aspect of the fonts we use is that none of the ones we commonly use
were developed for the electronic environment. There are now a few fonts that have been
specifically designed for the unique nature of the web browser and the computer monitor,
which ultimately displays the font chosen. Believe me, not all monitors are created
equally, and while the Times New Roman font is the default used by browsers, it does not
always look the best. The serif font created specifically for computer monitors is the font
“Georgia.” The font was developed to display the serif part of each letter on a square
pixel computer screen. The sans-serif font developed for electronic display is “Verdana.”
While it is not necessary to code for these fonts specifically, they are the fonts that will

10 of 45

look the best regardless of the font size chosen when displaying a web page. See the
section “Advanced Topics” for more information about setting these fonts for each web
page.

The Anchor Tag

The anchor tag, <a> is probably the most significant aspect of the hypertext markup
page since it is the anchor tag that makes the link to other content pages. There are many
different types of anchor tags or more specifically, there are links to many different web
based content and services that the anchor tag provides. There are 4 basic different types
of links that the web page coder can put on a web page. These are discussed in detail
below.

The link to another web page on the same server

The typical link on a web page is to another web page on your web server or in your web
site. This is the simplest link requiring the name of the file or the name of the file and its
directory tree structure. For example, if you want to link someone from your home page
to your Public Education Classes on a file named “classes.htm” then the link would be:

 Public Education Classes

If the file was located in a folder called “PE” then the link would be:

 Public Education Classes

If the file was located above the current location in the directory structure then the link
would be:

 Public Education Classes

The dot-dot-slash (../) tells the browser to look for a file above its current directory folder.
Repeating this code will tell the browser to look up two levels in the directory structure.
The analogy that fits best here is that the “../” tells the browser to take one step back and
to look in that folder to find the file. Each “../” is a step back. You can step back and
forward again, meaning that you can open another folder at a level above your current
location by using the following code:

 Public Education Classes

Here the browser will step up the directory structure, open the folder “PE” and look for
the file “classes.htm.” You have already probably surmised that if you do not accurately
type the location of the file, or look in the wrong directory structure, then the browser
will not be able to find the file.

11 of 45

The link to another web site

The second most common link on a web page would be a link to another web site. The
link in the href=”” attribute needs to specify the protocol of the communication that the
browser should expect to find. In the case of the World Wide Web, the first four letters
of the Uniform Resource Locator are HTTP which stand for HyperText Transport
Protocol. There are many other protocols including File Transfer Protocol (FTP) and
HyperText Transport Secure (HTTS). An example of a link connecting the user to
another website would be:

 The United States Coast Guard
Auxiliary National Web Site

The link to an email address is a convenience for the user so that they do not need to re-
type the email address, a tiresome chore. Providing an email link is simple, but it must be
remembered that the client or visitor must have an email program configured to run when
an email link is clicked on in the browser. For example, my computer has Microsoft
Outlook configured to start whenever an email link is clicked on in my Internet Explorer
browser. If my email was not configured in my browser then it might inform me of the
need to configure an email software or prevent the link from working. The anchor tag
and the href=”” attribute should look like this:

 email todd

The named anchor tag

The named anchor tag is another convenient aide to provide the visitor to your web site.
Some web pages extend below the scroll for several “stops” and providing visitors a way
to jump around on that page is great. The named anchor tag performs this service. The
name=”” attribute is used instead of the href=”” attribute to mark in the document where
you want to make the jump. For example, often you may find a “TOP” link in a page
which jumps you to the top of the web page. To perform this on your web page, place
the following code within the <body> </body> tags nearest to the start tag:

Then place a link somewhere near the bottom of your web page to the named anchor with
the following code:

 TOP

You may have noticed that the href=”” attribute is used in this case. If you think about
the href=”” attribute as the hypertext reference link, then this starts to make sense. The
end result is that wherever the link to top is placed, clicking on it returns the browser
window to the top of the web page. This technique is often done for glossaries and other

12 of 45

http://www.cgaux.og/
mailto:todd.thuma@gactr.uga.edu

content that is easily segmented and benefits from having a list of links at the top of a
page that jump a visitor to the exact location of that section.

One important point to understand is how the browser prioritizes the scroll. The named
anchor tag will place the location of the named anchor at the top of the screen as long as
there is content to place at the bottom. The preference is to put the last line of text in the
bottom of the window. If the named anchor is only halfway up from the bottom, then
that is where the browser places the named anchor, halfway up from the bottom.
Experiment with your code to experience this yourself. View the section “Example HTM
File – Advanced” for a closer examination of how this named anchor tag works.

A general note about links

All of the mentioned anchor tags have attributes other than the name=”” and href=””
attribute. The title=”” attribute is a way to name the link and refer to it by other code
in your document and provides a hover hint when the mouse is rolled over the linking
text. It is also a way of communicating information to screen readers especially when
using the target=”” attribute to open the next click in a new browser window or a
specific frame. The target=”” attribute tells the browser where to open the link.
Defining the target attribute to be “_top” (target=”_top”) means that the link will open
in the whole, currently active browser. The “_blank” value opens the link in a new
window on top of the current browser window. This is typically the command that is
used to open pop-ups. The “_self” opens in the current browser window and “_parent”
opens the link in the parent browser window and is especially important when working
with fames. Below are a couple examples of anchor tags with defined target and title
attributes.

 <a href=”http://www.cgaux7.org” target=”_blank” title=”link will
open in a new browser window”>7th District Auxiliary Web Site

 <a href=”classes.htm” target=”_self” title=”link will open the
Public Education Classes Schedule web page”>Public Education
Classes

Any text placed between the start and end tag for the anchor is the text that appears as the
linkable text. In the examples above, “Public Education Classes” would appear as
underlined and blue text. The text “7th District Auxiliary Web Site” would also be in blue
and underlined, but the “th” would not appear as a smaller font and superscripted as seen
in this document, but it would instead appear as “7th”. MS Word did that automatically
for me, but the browser will not. If I want the text to appear that way, I have to use either
a special character or a series of HTML tags. The series of tags would be:

7^{th}

Here the tag is used to reduce the size of the text “th” to the smallest font size.
The <sup> tag is the superscript tag and will elevate the text off the baseline. Note how

13 of 45

http://www.cgaux7.org/

the font tag is started and stopped within another series of tags, the tags.
This is called nesting and all tags must be nested properly in order to work in the HTML
4.0 and XHTML standards. Below is an example of tags that are not nested properly and
will not work correctly when displayed:

 7^{th}

Notice that the font tag is started but not ended prior to ending the superscript tag. To
nest you must end (or close) the last tag opened and follow the sequence until all tags are
ended. The <html> </html> tag is an example of this because all tags for web page
coding are nested between the start and end tag.

The Image Tag is really a Link

The image tag is technically a specialized link because images are not technically in the
web page. The browser codes for space to be allocated to the image when the web page
is drawn and the image is “included” from the source. A simple implementation of the
tag is below:

<img src=”aux_logo.gif” alt=”The Official Logo of the United
States Coast Guard Auxiliary” />

In this example the image tag has a source attribute, scr=””, and an alternative
text attribute, alt=””. The src=”” and alt=”” attributes are mandatory, one to display
the image and the other to provide a text equivalent for the image in case the image does
not load or a screen reader is used. You will also notice that the image tag does not have
an end tag and requires a forward slash, “/” just before the greater-than sign.

Images occupy space and in the example above, no dimensions are specified. The lack of
specific dimensions will cause the web page to load slowly. This is because the browser
must calculate the need for space in the web page prior to drawing the text and the
graphics. If the dimensions, height and width are specified as attributes, then the browser
is told how much space to allocate and will actually draw the text of the web page while
the images download to the user. The code below is an example of a more complicated
image tag:

<img src=”aux_logo.gif” width=”20” height=”20” alt=”The Official
Logo of the United States Coast Guard Auxiliary” />

The width=”20” attribute and the height=”20” attribute specify the number of pixels
that the graphic will occupy in the horizontal and vertical directions. Just about every
image viewing and editing program will have the ability to tell you the size of the
graphic. Leaving this attributes blank means that the browser will get this information
from the image itself.

There are a couple of other important attributes that can be defined here. The border=””
uses pixels, expressed as integers placed between the quotation marks in the attribute, to

14 of 45

define the amount of border thickness to place around the graphic. The default is zero or
none and can be manually set with border=”0”.

The space reserved around the graphic, the space where the text or other objects would
go, can be defined in attributes as well. The hspace=”” sets a empty space around the
graphic in the horizontal dimension and the vertical dimension of space is defined with
the vspace=””. There are other attributes that are outlined in the section, “HTML Code
Listing.”

Different Image Types

There are different types of images and each file format is specific for a particular type of
image. The *.gif file format and the *.jpg file format where the first formats capable of
being decoded by the browser. The *gif file format was created by CompuServe back in
the late 80’s early 90’s. They patented the file compression format but never pushed for
the royalties that were owed to them and the *.gif file format became the main graphic
format for viewing on the Internet. The *.jpg file format came out in the middle to late
90’s and was an attempt by the Joint Photographic Experts Group (JPEG) to create a
compression scheme that did better on photographic style images than the *.gif format
was doing. They succeeded in creating an open source standard that exists today as the
best means of compression for photographs. The *.gif compression format is best for
cartoon, line drawing, and simple colored images.

Unfortunately, patents and intellectual property are causing the *.gif image compression
format to die off. The company that bought CompuServe realized that they could profit
from the patents that they now owned and spent the last couple years in court trying to
get a legal ruling that would allow them to recoup royalties from companies using the
*.gif compression standard. They achieved this ruling in the early 2000 but unfortunately
the ruling is a little like mandating that the barn door be closed even though the horses
are long gone.

The replacement, *.png, is better anyway and is an open source standard that has no
patent or royalty baggage associated with it. The *.png file format stands for Portable
Network Graphics and browsers already have the code necessary to decode the file
format and display that in the browser window. The *.png format is best for *.gif style
images meaning line drawing, simple colors, and cartoon or clip art style graphics.
Basically anything that is not a photograph is best to be compressed into a *.png file.

Another file format on the horizon and will be important in the near future is the *.svg
file format or Scalable Vector Graphics. The advantage of a scalable vector graphic is
that it can be scaled up or down without a loss of quality. The file format will even allow
animation of the graphic on a web page and morphing into other shapes and colors. This
is an open source standard to what can be done in the Macromedia Flash software and
when *.svg compression is built into programs like Microsoft’s PowerPoint or Adobe
Photoshop you will see widespread acceptance in the web community. Both the

15 of 45

Netscape 7.0 and Microsoft I.E. 6.0 browsers can read *.svg files without adding a plug-
in.

Tables Arrange the Text

Tables present an easy and efficient means of laying out text on a web page. Defining
columns, rows, and cells make the work of laying out text both beautiful and organized.
Unfortunately, this is true for only the sighted reader. A screen reader has a terrible time
navigating the code to get at the content, and the use of table tags for content layout,
except when laying out data in a tabular form, is deprecated. As we move towards
separating content from the formatting and layout it is important to eliminate the use of
table tags for the purpose of layout text, unless the information like data is suited to a
table. The good news is that table tags are allowed under the 508 Guidelines as long as
you indicate that the table is for layout purposes only. The section below illustrates both
uses of the table, one to layout tabular data and the other for layout elements on a page.

A Table of Data

The table tag, <table> </table> is a straight forward tag with a several attribute tags.
It starts the table and every tag that is presented in this section must fall between the start
and end tags. See the code below followed by a detailed discussion:

<table align=”center” width=”80%” border=”1” cellpadding=”3”
cellspacing=”2” summary=”this table displays data representing the
mission and the number of hours engaged in that mission for the
operational year 2001”>
<thead>
<th width=”80%” align=”center”>
Mission
</th>
<th width=”20%” align=”center”>
Hours
</th>
</thead>
<tbody>
<tr>
<td width=”80%” width=”left”>
Operations: Surface
</td>
<td width=”20%” width=”center”>
250
</td>
</tr>
<tr>
<td>
Operations: Air
</td>
<td>
148

16 of 45

</td>
</tr>
<tr>
<td>
Public Education
</td>
<td>
221
</td>
</tr>
</tbody>
</table>

From the beginning you can see that several attributes are defined in the table start tag.
The align=”” attribute defines whether or not the table is placed in the center of the page
or in the left or right margins. The width=”” attribute defines the size of the table and
can be done in either percent or pixel widths. Percent is preferred and here the example
is 80% of the window width. Greater control can be defined by assigning a pixel width
such as 640 pixels or 800 pixels. I always design for an 800 by 600 screen resolution,
which means the screen is 800 pixels by 600 pixels. I typically define my tables to be no
more that 750 pixels wide.

The border=”” attribute tells the browser to place a border around the table and define
each cell with a border. The default value is 0 and the value can be set fairly high, but a
border thicker than about 5 looks bad. The cellspacing=”” and cellpadding=””
attributes define the space between cells and the space within a cell on all sides before
text is displayed, respectively. The summary=”” attribute is also important as that is
where you tell screen readers and other special browsers what the table is used for.

The table is defined into sub-sections, the head (<thead> </thead>) and the body
(<tbody> </tbody>). Inside the <thead> </thead> tags is the <th> </th> which is
the head of each column. This table is 2 columns because I defined two <th> </th>
combinations. Had I specified a third, then there would be a third column. Be careful to
specify no more than 100% of the tables width or if using pixels, define only enough to
equal the pixel width of the table as a whole. In either case you cannot excide the
specified width of the table. The alignment of each cell can be specified too or in the first
instance of each column as seen in the code above.

The rows in a table are offset with <tr> </tr> tags and the table data tags, <td> </td>
are placed inside these. Use the same number of <td> </td> as you used in the <th>
</th> or the table may not display in the browser. There are a few tricks that you can
employ if you want to combine or eliminate cells, but that is reserved for an advanced
section on the topic.

Here too in table data tags you can define the alignment attribute as well as the width.
Note that once the first series of <td> </td> tags are assigned attributes, it is not
necessary to repeat that code unless something changes later in the table. The text that
you want to appear in the table is placed between the <td> </td> tags and you can place

17 of 45

any tags there that you would use outside of the table including <p> </p>,
, , among others.

Here’s what the table should look like in a web browser:

Mission Hours

Operations: Surface 250
Operation: Air 148
Public Education 221

One attribute not seen in the code above is the bgcolor=”” attribute that allows the color
of the cell, row, or table to be specified. You can place the bgcolor=”” attribute in the
<table>, <tr>, <th>, or the <td> tags. Using the hexadecimal code for the color desired
you can define the background color. You should never use color as part of the
information that you are communicating on a web page, because color is not consistently
applied in every browser, the importance of color is lost on screen readers, and color-
blind individuals may not see the colors you intended.

Laying it all out with Tables

Using table tags to layout your web page is a great way to maintain control over where
text, graphics, and other objects are placed. Keep in mind this is no longer a preferred
means of laying out information on a web page, but the newer method used to layout
elements on a web page is an advanced topic reserved for a later discussion. I often place
a header at the top of the page followed by a navigation menu to the left and the body of
text on the right. See the code for this below and compare it with the table used for data
layout.

<table width=”600” align=”left” summary=”the table is used for layout
purposes only and lays out a page header on the top with a navigation
menu on the left and a main body of text on the right under the
header”>
<tr>
<td colspan=”2” width=”600” title=”header”>
<img src=”header.jpg” width=”600” height=”100” alt=”a graphic header of
several images from missions of Flotilla 28 in the Bay of Volunteer” />
</td>
</tr>
<tr>
<td width=”150” align=”left”>
<img
src=”home.gif” width=”150” height=”80” alt=”home” />

<a href=”operations.html” target=”_self” title=”link to the operations
page”><img src=”operations.gif” width=”150” height=”80”
alt=”operations” />

<a href=”pe.html” target=”_self” title=”link to the public education
page”><img src=”public_ed.gif” width=”150” height=”80” alt=”public
education” />

18 of 45

<a href=”vsc.html” target=”_self” title=”link to the vessel safety
check web page”><img src=”” width=”150” height=”80” alt=”vessel safety
checks” />

</td>
<td>
<p>
Welcome to the web page of Flotilla 28, America’s Volunteer Lifesavers
in the Bay of Volunteer. Explore the links in the navigation menu on
the left to learn more about the U.S. Coast Guard Auxiliary and our
commitment to your safety on the water.
</p>
<p>
Just in case you were wondering, the USCG Auxiliary is part of the
Department of Homeland Security, too. As members of this department we
are ever diligent to the security of assets on the water. Follow this
link here to visit the Department of
Homeland Security.
</p>
</td>
</tr>
</table>

The code above defines a table with 2 rows and 2 columns with the first row occupying
both cells in the row. The colspan=”” attribute in the first <td> </td> tag merges the
two cells that would have been here on this row. The attribute colspan=”” literally tells
the browser to have the cell, defined by the <td> </td> tags to span the number of
columns specified in the attribute. The same trick can be applied across rows with the
rowspan=”” attribute. Be certain to omit the extra <td> </td> tags nested with in
subsequent <tr> </tr> tags to prevent to many cells from appearing within a row. If the
table looks funny or has extra, compressed cells at the left or right sides of the table, this
is typically because of too many cells being defined for a row.

The tag codes for the header graphic and defines the alternative text that will
appear in the first row of the table.

The next row is divided into two columns, a left navigation menu and the main body of
text. The navigation menu in this case is 4 image buttons where an image is made to be a
link by placing it inside the <a> tag. Because the links are images be certain not to forget
the alt=”” attribute so that the screen reader will indicate which button links where.

The
 is a line break tag that has no end tag and therefore requires a forward slash
in the back half of the tag. The line break tag will force the next graphic to be on a new
line. This is necessary because the browser likes to make decisions about where to place
graphics and text and it might “accidentally” place two image buttons side-by-side rather
than one on top of the other. The
 tag is a way to force the line break.

The main body of text in the last cell in the second row is fairly straight forward. Any
tags can go here and in the example above, two paragraph tags are seen. Basically, the
table coded for above should look like the table depicted below. Note that the table
below has a “weak” border, but the table in the code above would have no border. The

19 of 45

MS Word program places a “weak” border line around the table as seen below, despite
the table lines being turned off. When the document is printed the table seen below in the
printed document will not have a border. Also the graphics were not presented in the
table below so that you could attend to the nature of the table and not worry about the
graphics. The text stands in for the graphics that would be placed there.

Graphic Header (not shown)

Home

Operations

Public Education

Vessel Safety
Checks

(graphical buttons,
not shown here)

Welcome to the web page of Flotilla 28, America’s Volunteer
Lifesavers in the Bay of Volunteer. Explore the links in the
navigation menu on the left to learn more about the U.S. Coast
Guard Auxiliary and our commitment to your safety on the water.

Just in case you were wondering, the USCG Auxiliary is part of
the Department of Homeland Security, too. As members of this
department we are ever diligent to the security of assets on the
water. Follow this link here to visit the Department of Homeland
Security.

Hexadecimal Code

There is nothing magical about hexadecimal code. The numbering system of 0 to 9 is a
system based on 10 digits in the “ones” column before starting into the “tens” column.
So the number 10 represents one value in the “tens” column and one value in the “ones”
column. The hexadecimal system uses 16 values in the “ones” column. Since 10 is a two
digit value, we need someway of representing the 10th, 11th, 12th, 13th, 14th, 15th, and 16th
values in the “ones” column. Since we start the numbering with 0, the value 9 is actually
the 10th value in the hexadecimal system. So we use the letters A, B, C, D, E, and F to
represent the 11th, 12th, 13th, 14th,15th, and 16th values in the hexadecimal system
respectively. So the hexadecimal system is number as: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, & F.

The basic reason for this is that computers work in bytes which are 8 bits of information,
ones and zeros. Each byte codes for a character that can be represented on the computer
screen. With respect to the web browser and color, the color of any object in the browser
is defined by the hexadecimal numbers described above. The attribute color=”” and
bgcolor=”” use a hexadecimal coding system to define the color for the attribute. The
variable placed in quotes must start with the # (pound sign). Following the # sign is two
hexadecimal digits for Red, two for Green and two for Blue. Coding for a level of red,
green, and blue you are able to reproduce over 25,000 different colors. This is because
you are actually telling the monitor what value of red to apply to the screen as well as the

20 of 45

http://www.dhs.gov/

value of green and blue to apply. By adjusting the levels of the respective colors, you can
create the other colors in the spectrum; orange, purple, maroon, cyan, magenta, etc.

The two hexadecimal digits actually are multiplied by the computer to obtain the color
value of each color segment. For example a color value for red only, #ff0000, would
mean that the red is turned on all the way to highest value of 256. Each “F” represents a
value of 16 and 16 multiplied by 16 equals 256. In Photoshop you might have noticed
that color can be defined in values of 0 to 255. Well, if you count 0 as the first value,
then the 256th value is 255. To achieve the color of black you must turn all of the colors
to off or #000000. To set the color to white you turn all of the colors to full on, #ffffff.
A small color table below illustrates the color possibilities.

Color Table

One important point to state about color is that while your web browser can display
between 25,000 and 16 million colors, this also depends on your computer monitor, the
human eye can recognize about 1000 distinct colors and shades of a color. Early
browsers could only differentiate between 216 colors. You might even see the term “web
safe” colors which refer to the 256 colors that every browser can display regardless of
computer platform.

Rule of 51’s

There is an easy way to remember the 256 web safe colors that can be coded for within a
browser that will reliably and faithfully be displayed on all computers equally. That is by
remembering the rule of 51’s and its relationship to the hexadecimal code. If you start
with zero and add 51 for each step you get 6 steps as your reach 255. If you related that
to the hexadecimal code, then a pattern emerges. The first value of 0 corresponds to 00
in hexadecimal code. The next step, 51, corresponds to 33 and 102 equates to 66. The
small table below illustrates this relationship.

Rule of 51’s

Step Hexadecimal
0 00
51 33
102 66
153 99
204 CC
255 FF

By combining the 6 possible hexadecimal values in the “Rule of 51” across the red,
green, and blue color assignment, you can achieve 216 possibilities. So what happened
to the other 40 colors? It turns out that the different browsers, Netscape and Internet
Explorer the two more popular ones, on different platforms deal with those additional
colors differently. Suffice it to say that it gets more complicated to use those 40 other

21 of 45

colors, so just stick with the 216 that the Rule of 51’s can produce. In essence what this
means is that you can only use the following combined hexadecimal values in your color
attributes: 00, 33, 66, 99, cc, or ff.

Accessibility for Web Sites

One of the great things about content available from the Internet is that it can be made
available to all people regardless of their learning or physical abilities. A published
physical book cannot meet that goal, because a different version of the book would need
to be produced to meet everyone’s unique situation. A blind person with a screen reader,
however, can benefit from the content placed online without the developer having to do
anything different for the content. The key is that the developer not place code “in-the-
way” of the screen reader so that the visually challenged visitor to the web page is not
frustrated when attempting to get at the content on the page.

What this basically means is that some of the tags that the web page developer chooses to
use can place blocks in the way of the screen reader. This gets back to the topic that
content should be separate from the format and layout of the content. As a result, some
of the code for layout and formatting text on a page has either been moved off the content
page or has been changed to code that is more friendly towards browsers and devices
used by visually changed visitors.

The government was challenged that the American Disabilities Act, a law which
mandated physical accessibility and other equalities providing access to structures and
government services for all people, extended to government web sites. Since the
Auxiliary is part of a government entity, our web sites must meet the ADA guidelines for
accessibility. The guidelines were added to the law and are known as the 508 Guidelines
for their section in the law.

The 508 Guidelines are fairly simple to follow and implement. The difficulty comes
from reading an understanding these guidelines and implementation with your web pages.
Web page editors, software used to generate web pages without the hand coding of
HTML, vary in their ability to implement the accessibility requirements.

A short list of 508 Guidelines is below:

Advanced Topics

Setting the font face to Verdana or Georgia is a simple matter complicated by the number
ways that it can be performed. One method is to use the tags to define the <font
face=””> for the text between the start and stop tags. Unfortunately, this method is
deprecated and strongly discouraged. Not to fear, however, there are other ways of
performing this task with varying degrees of difficulty.

22 of 45

The technique common to all the methods is called style sheeting. You can apply the
style sheet as an inline element, as an attribute in the layout element, to the whole body,
or as a cascading style sheet. Using the style=”” attribute you can define the font face,
color, and size among other characteristics, using the tagging element .
The span element defines the span of application of the attributes described in the
style=”” code. For example, if I wanted to switch from the default values of the web
page from Times New Roman and black to Arial and red text I would use the following
tag:

All of the text placed between the start and end tag will be red in color and the font face,
or family, will be Arial. Note that the style sheet defines the property and then separates
the value of the property with a colon. Also notice that multiple properties can be
defined by separating their call for expression with a semicolon. The style=”” attribute
is the sole container defined by the start and end double quotation marks. There are no
spaces between the property and the colon and the value applied to the property. The
 element is an inline element that changes only the text within the start and end
tag. There are other uses for the element discussed elsewhere in this document.

The paragraph tags, <p> </p>, can also be used to define how an entire paragraph of text
will appear. This is important because the span element is intended for short sections of
text not an entire paragraph. An example might be to use the span element when you
need to change the color of one word in the paragraph versus setting the entire paragraph
of text such as in a quoted passage from a book. An example of this is below.

 <p style=”color:#000000; font-style:italic; font-family:Verdana,
sans-serif; font-size:larger ”>

The style attribute properties above define a paragraph that will be black text in color, be
italicized, use the Verdana font if available and if not use the default sans-serif font, and
will be larger in size than the default font. Below is a short list of properties that can be
applied to text.

Style Property Optional Values
font-family Arial, Helvetica, Times,

Courier, Verdana, Trebuchet,
Georgia, Comic Sans, serif,
sans-serif, monospace

font-size xx-small, x-small, small,
medium*, large, x-large, xx-
large

font-style normal*, italic
font-variant normal*, small-caps
font-weight normal*, bold
Color #rrggbb, #000000*
text-align left*, center, right
text-
decoration

none*, line-through, underline

23 of 45

text-indent number of pixels in integer
values, only works on the first
line, second line not indented,
default is 0

*default value

If you defined the property values for an entire paragraph of text and needed to define a
short phrase differently from the paragraph, then you would use the span element to
change from the values set by the paragraph to the property values for the specific word
or phrase inside that paragraph.

To identify the style attribute for an entire HTML document you can specify the style
attribute in the body tag or you can define the styles the style element tag, <style>
</style> and place those start and end tags nested in the <head> </head> tags. An
example of the first option is identical to the paragraph style attribute described above.
The <style> </style> tag is a little different and requires a different attribute in the
element tags in order to refer to the style attribute. The short example below is taken
from the section “Example HTML File – Advanced.”

<style type=”text/css”>
.quote {color:#000000; font-style:italic; font-

family:Verdana, sans-serif; font-size:larger; text-indent:20px; }
.title {color:#0000ff; font-weight:bold; font-

family:Verdana, Arial, Helvetica, sans-serif; text-
decoration:underline;}
 .normal {color:#000000; font-weight:normal; font-
style:normal; font-family: Georgia, Times, Time New Roman, serif;
}
 .important {font-weight:bold;}
</style>
</head>
<body>
<h1 class=”title”> From the Operations Officer</h1>
<p class=”normal”>I would like to start this section on the
importance of training with a quote from the admiral.</p>
<p class=”quote”> The key to success on a mission is <span
class=”important”>training, because it is training that
prepares us for the inevitable emergency that through <span
class=”important”>diligence to training comes
infrequently. </p>

All of this code above enables us to examine several key aspects of style sheeting. The
call for the styles starts in the style element. Here the start and end tag delineate the
classes that will be called to by individual element and the class=”” attribute. Classes
are nothing more than a set of properties pre-defined in the web page. This eliminates a
great deal of repetition in your code from layout element to layout element because you
can simply refer to a set of properties, in this case a class, than have to re-type the string
of properties and values that make up the style.

24 of 45

The style element has a type=”” attribute that must be defined, but it is always the same
type=”text/css”. The class is defined by starting with a period and following with a
unique name. In the example above the classes are “quote”, “title”, “normal”, and
“important”. The brackets, {}, contain the properties and the values that define the class.
Any number of properties can be defined here but the same property can not be defined
twice.

The elements place between the body start and end tags must call to the head section
using the class=”” attribute. In the <h1> </h1> tag the class attribute is defined as
class=”title” and the text will appear blue, bold, and appear in sans-serif font. The
class prioritizes the font family defining Verdana first, Arial second, and Helvetica third.
If none of these fonts are available, then the default sans-serif font available on the
client’s computer will be used. The first paragraph uses the class=”normal”
specification where the text appears black, non-italicized, normal weight, and will appear
in the font family Georgia, Time, or Times New Roman before using default serif font.
This step is not necessary if you want to stay with the page defaults or you can define the
page defaults in the body tag with the style=”” attribute.

The quote class will italicize the text, specify black for color, use the Verdana font if
available and indent the first line of text 20 pixels. The span element with the
class=”important” will do something unexpected with the text that falls in between the
span tags. The text will no longer be Verdana or be italicized because the class,
“important” does not specify the text the way that the class=”quote” does. This is
because the span element placed within the paragraph element will use all default values
for the web page unless specified in the code. The paragraph gets is class coding from
the class=”quotes” specifying italicized and a special font. Both deviate from the
default values of the document. So when class=”important” is employed in the span
element, the span element trumps the paragraph tag class attribute.

The final method of style sheeting is to not place the class definitions in the web page at
all. You place the definition for each class in a separate file and call to that file from the
web page documents that you create. This means that instead of repeating the classes in
the style element, <style> </style>, of each header in each document you define it
only once in a Cascading Style Sheet. As your web site grows you will really appreciate
what this means because only one file, the *.css file, will need to be changed to change
the format of all the web pages in your web site. Without the *.css file, you would need
to change dozens, even hundreds of documents to make changes to the format of each
document.

To complete this step you place all of the classes defined between the <style>
</style> tags in the example above and put that code in its own text document saved
with the *.css file extension. You must then place a <link /> element in the <head>
</head> region. There are several essential attributes that must be placed and defined
there in the <link /> element. The rel=”” attribute must be defined as stylesheet
thusly; rel=”stylesheet”. The type attribute is also used: type=”text/css”. Finally,
the href=”” attribute is used to define the location of the *.css file.

25 of 45

26 of 45

Example HTML File – Simple

<html>
<head>
<title>
U.S. Coast Guard Auxiliary District 7 Web Site Homepage
</title>
</head>
<body bgcolor=”#cc33ff”>

<!-- Display Header at the top of the web page -->
<h1>
United States Coast Guard Auxiliary
</h1>

<h2>
District 7
</h2>

<!-- main body of text on web page -->

<p>
The 7th District of the U.S.C.G. Auxiliary encompasses Georgia, South Carolina, and
Florida with the exception of a portion of the Florida panhandle and a bite out of western
Georgia around the city of Columbus. Aside from the continental United States, the 7th
District Auxiliary also includes the U.S. Virgin Islands and the islands that comprise
Puerto Rico. Members in this District patrol the waters of the Gulf of Mexico, the waters
around the Florida Keys, the waters surrounding U.S. Protectorates in the Caribbean, the
Atlantic Coast as far north as the state border with North Carolina, and hundreds of lakes
in these areas.
</p>

<p>
There are 16 Divisions in the 7th District and the 1st Division has the distinction of being
located in Puerto Rico. The 2nd Division is land-locked in north and northeast Georgia,
central Georgia, and southwest South Carolina. Division 12 is also land-locked in central
and southwestern South Carolina, with the coastal South Carolina and Georgia border
being designate the 10 Division. With the exception of the 16th Division which organizes
the Flotillas in the U.S. Virgin Islands, all of the other Divisions are spread around the
state of Florida. Most are on the coast, but some include Flotillas that patrol the lakes of
Florida. The 7th District has over 6,000 Auxiliarists in this region and ranks as one of the
largest District in the Coast Guard.
</p>

<p>
Our members perform many functions as part of Team Coast Guard. We conduct public
education programs that teach adults and children about safe boating and environmental
practices while on the water. We conduct free boating safety checks to educate the boater
about necessary safety gear and safe practices of boating operation. Some of our

27 of 45

Auxiliarists fly their own aircraft in support of homeland security, port over-flights, and
coastal safety patrols. While on the water, Auxiliarists provide safety patrols, verify the
presence, position, and condition of Aids to Navigation, assist boaters in immediate need,
patrols areas that the active duty Coast Guard might not frequent. Both the air assets and
the surface assets of the Auxiliary provide additional search and rescue capabilities when
the Coast Guard is called to rescue stranded boaters or downed planes. Auxiliarists also
man some of the Coast Guard bases providing for administrative support or stand radio
watches. In the area of Marine Safety, Auxiliarists work alongside the active duty
personnel in the Coast Guard examining commercial vessels for safety and compliance
with the laws of the United States. Just as the Coast Guard is tasked with multiple duties
and assignments involving the navigatable waters of the U.S., the Auxiliary is there
standing with the active duty Coast Guard personnel in support of their many missions.
</p>

<!-- disclaimer section -->

<p align=”center”>
This web
</p>

</body>
</html>

28 of 45

Example HTML File – Lists

<html>
<head>
<title>
U.S. Coast Guard Auxiliary District 7 List of Duties and Definitions
</title>
</head>
<body bgcolor=”#cc33ff”>

<h1>
Duties and Definitions
</h1>

<h2>
Duties
</h2>

Education

Marine Safety

Safety Patrols

Search and Rescue

Administrative Support

<hr align="right" size="10" width="50%" color="white" />

<hr color="#ffffff" />

<h2>
Definitions
</h2>

<!-- alphabetical list of terms and definitions used in this document -
->
<dl>
<dt>
Education
</dt>
<dd>

29 of 45

Education involves the passing of information from an experienced individual to an
inexperienced individual often involving skill demonstration or information exchange.
Typically the novice is judged by the expert in a manner of examination or testing
involving practical skill assessment or written evaluation of knowledge and
understanding.
</dd>
<dt>
Marine Safety
</dt>
<dd>
The marine environment is often ad odds with development and progress of humans.
Maintaining our precious resource from polluters and those intent on profiting from
practices that will render the environment unusable by others is the focus of the Marine
Safety Offices in the U.S. Coast Guard. The U.S. Coast Guard monitors pollution
clean-up in the navigatable waterways of the United States and their protectorates. The
MSO Office also examines commercial vessels for compliance with safety of their cargo
and passengers when in the navigatable waters of the United States and their
Protectorates. The MSO Office also assists U.S. Customs and Port Authority agencies
with the monitoring of cargo importation at the dozens of ports in the U.S.
</dd>
<dt>
Safety Patrols
</dt>
<dd>
Safety Patrols is performed on the water or in the air and generally involves monitoring a
set area in the event of an emergency or a call for assistance. The vessel or aircraft
during a standard safety patrol may discover a boater or a boat in trouble and can render
assistance. Or perhaps the patrol asset while underway may be called to aid a boater that
has called the Coast Guard in distress using a VHF radio. These safety patrols are
likewise able to discern when conditions or situations deviate from the norm and can
report these instances back to the department of Homeland Security.
</dd>
<dt>
Search and Rescue
</dt>
<dd>
The hallmark of the Coast Guard is the search and rescue mission. Either through the
forces of nature or from a boaters failure to know or practice safe boating techniques, a
boater may become distressed and need immediate assistance. The Coast Guard will
attempt to locate vessels in distress and render assistance after locating a vessel in
distress. The practice of search and rescue requires consistent training to become
practiced and efficient at skills and techniques refined over many years of use. The
constant need for training and practice keeps the U.S. Coast Guard Auxiliary ready to
follow the example of our motto Semper Paratus, Always Ready.
</dd>
<dt>
Administrative Support
</dt>
<dd>

30 of 45

The Auxiliary is a force multiplier for the active duty Coast Guard personnel. While our
members are not typically the young men and women the comprise the Coast Guard, their
experience and skill enable them to provide support at many levels of Coast Guard
operations. From standing watch in the radio room to processing many of the daily and
necessary documents inherent in the U.S.C.G organization, an Auxiliarist can free a
younger enlisted person or officer to perform more active or specialized skills. Even if an
Auxiliarist can take over the grounds keeping duties of a small boat station, the active
duty Coast Guard can spend more time on the water protecting the navigatable waters of
the U.S.
</dd>
</dl>
</body>
</html>

31 of 45

HTML Code Listing

<html> </html>

- Starts and ends a web page. Everything placed between these tags will be
interpreted by the web browser

Attributes
- xml:lang=””

o human language of the document
o for English the attribute would be: xml:lang=”en”
o this attribute can be omitted
o this attribute is used in other tags

- xmlns=””
o XML-namespace
o This attribute can be omitted
o This attribute is used in other tags

<head> </head>

- Delineates the head of the web page
- Between the head tags goes the element tags <meta>, <style>, <title>,

<script>, and <link>.
Attributes
- profile=””

o unknown
o this attribute can be omitted
o this attribute is used in other tags

<body> </body>

- Delineates the body of the web page
- Most of the HTML element tags available to the web page developer go

between these tags
Attributes
- bgcolor=””

o establishes the background color of the web page, default is white
- link=””

o establishes the color of the hypertext links on the web page, default is
blue

- vlink=””
o establishes the visited link color on the web page, default is purple

- alink=””
o establishes the active link color on the web page, default is red
o this is the color the link takes when you click on hold on the link

- text=””
o establishes the color of the text in the web page

- background=””
o defines the background image to be displayed on the web page

32 of 45

o if defined this will supersede the bgcolor attribute

<p> </p>

- separates content on a web page into paragraphs
Attributes
- align=””

o determines how the paragraph is to be aligned on the web page
 options: left, center, right, justify

<h1> </h1>

- defines section headings or headlines within the web page
- there are 6 different pre-defined section headings numbered from 1 to 6 in

decreasing level of prominence with respect to the standard content on the
web page placed between paragraph tags

Attributes
- align=””

o determines how the section heading is aligned on the web page
o options: left, center, right

- generates an unordered list of items
- between the start and end tag goes the tags
Attributes
- type=””

o defines the type of bullet that the list will display, default is a solid
circle

 options: disc, circle, & square

- generates a numbered list of items
- between the start and end tag goes the tags
Attributes
- type=””

o defines the list style type of the numbered list
 options: 1, a, i, A, & I (roman numerals)

- start=””
o defines the value to start with

 options: depends on the type of style selected

- defines the list item in either ordered or unordered lists
Attributes
- type=””

o defines the list style type of the numbered list
 options: 1, a, i, A, I (roman numerals), disc, circle, & square

33 of 45

 cannot contradict the “type” defined in the ordered or
unordered list tag

- value=””
o defines the value or bullet displayed in front of the list item

 options: depends on the type of the style selected

<dl> </dl>

- definition list is a specialized form of list that comes with tags that define the
items in the definition list

- between the start and end tags goes the tags <dt> and <dd>
Attributes
- compact

o places the definition of the term on the same line if the definition of
the term is short

<dt> </dt>

- defines the term to be defined in the list
- must be placed between the <dl> </dl> definition list tags
Attribute
- nowrap

o prevents the line of text comprising the definition term from wrapping
o if included, nowrap is on, to turn off omit from the tag

<dd> </dd>

- defines the definition of the term
- must be placed after the definition term to which it applies and within the

<dl> and </dl> tags
Attributes
- nowrap

o prevents the line of text comprising the definition from wrapping
o if included nowrap is on, to turn off omit from the tag

<hr />

- places a horizontal ruler on the web page
- inserts a line break of space above and below the horizontal ruler position
Attributes
- align=””

o aligns the position of the horizontal ruler from left to right
o options: left, center, right

- size=””
o determines the thickness of the horizontal ruler
o any integer value greater than 0 in pixels

- width=””
o determines the number of pixels from left to right that the line is drawn
o any integer value greater than 0 in pixels
o or a percentage of the window width greater than 0%

34 of 45

- noshade
o prevents a shadow from appearing behind the horizontal ruler

- color=””
o determines the color of the horizontal ruler displayed (Internet

Explorer only, will not appear in the Netscape Browser)

- formats the text appearing between the start and end tags
- this is no longer the preferred method and has been deprecated, although it

still works in current browsers
Attributes
- color=””

o defines the color of the text
o use hexadecimal numbers to substitute for red (rr), green (gg), and

blue (bb) in “#rrggbb”
- size=””

o defines the size of the text
o value options include

 1, 2, 3, 4, 5, 6, 7
 3 is the default size of text in browser window
 or +, -, 2+, 2-, etc.

- face=””
o defines the font of the text
o default is “Times New Roman,” a serif font
o options

 serif fonts
• Times New Roman
• Georgia
• Times
• Tahoma
• Others
• serif

 Sans-serif fonts
• Arial
• Verdana
• Helvetica
• Geneva
• Others
• Sans-serif

o The client must have the font on their computer in order to display
the specified font defined in the font tag. If the font is not available,
then the browser defaults to the font family, serif or sans-serif, if
specified of the client’s browser.

- inserts an image into the web page as the web page is drawn by the browser

35 of 45

- Note: image files must be placed in a location where the web page can access.
While text is coded for in the web page with the HTML code, the image is not
included into the code except for the reference to the link. This is different
than a word processed document where the image is incorporated into the
document and the image file itself does not need to be included along with the
document. Web pages by themselves do not contain the image, so the file
must be included on the computer, disc or disk along with the HTML file.

Attributes
- src=””

o technically src or source is an attribute of the image tag. Place the
location of the file in the src=”” attribute. This will accept a URL
enabling a link to another web server but its practice is discouraged
since this linked-to server will be overburdened with image delivery.

- width=””
o defines the width of the image
o leaving this attribute out means that the browser will not know how

much space to allow around the image. The browser must upload the
image before preceding with text presentation. If the image width is
defined then the browser is able to allot the space necessary for the
image and the end result is that the text of the document will appear in
the browser window before the graphics have completed uploading.
This means that the web page uploads to the client faster. Height must
be included to work properly.

o Values are presented in pixels
- height=””

o defines the height of the image
o leaving this attribute out means that the browser will not know how

much space to allow around the image. The browser must upload the
image before preceding with text presentation. If the image height is
defined then the browser is able to allot the space necessary for the
image and the end result is that the text of the document will appear in
the browser window before the graphics have completed uploading.
This means that the web page uploads to the client faster. Width must
be included to work properly.

o Values are presented in pixels
- border=””

o defines the thickness of the border that appears around the image
o a value of “0” turns the border off and is the default value.
o Values are presented in pixels

- alt=””
o allows for a text description of the image and is required as part of

accessibility guidelines
- hspace=””

o defines the horizontal space around the image before text is presented
o values are presented in pixels

- vspace=””

36 of 45

o defines the vertical space around the image before text is presented
o values are presented in pixels

- align=””
o defines how text is aligned with the image. There are many options

and this attribute is deprecated in favor or a better method.
o Options

 Left
 Right
 Top
 Texttop
 Absmiddle
 Middle
 Bottom
 Baseline
 Absbottom

- usemap=””
o used in creating an image map that allows different regions of the

image to link to different locations
o place the URL in between the quotes and can link directly to the image

map code in the document with “#map-name”.
o Advanced Technique

- ismap=””
o defines the regions of the image map. This code is used to define

regions of an image through shapes and x and y coordinates. Must be
listed in the code with a map name.

o Advanced Technique
- longdesc=””

o for accessibility reasons, long description (longdesc) was included as
an attribute so that lengthy descriptions of images could be created as a
file and linked to by this attribute

o useful for describing an image in detail but not having to place it in the
alt attribute.

o Place the URL to the long description file between the quotes

- Formats the text between the start and end tag into a bold font
- replaces the tag

- Formats the text between the start and end tag into an italicized font

<blockquote></blockquote>

- A layout element that is similar to the <p></p> tag but indents the paragraph
to the right

37 of 45

- a layout element for text that codes for a line break

<pre></pre>

- a text format and text layout element called pre-formatted meaning that the
format comes from the way it is formatted in the HTML File.

- text that appears between the tags will appear as formatted in the HTML File
even to the point of no carriage returns

- great for making text appear as it is typed by a typewriter or controlling where
the lines breaks occur

<tt></tt>

- a text format element similar to the pre-format tag and stands fro “typed text”
- text between the tags appears as typed text and the window size determines

the carriage returns

Table Elements

<table> </table>

- Defines a table in the HTML file
- Has several related tags that must appear nested between the elements and

these appear below
Attributes
- border=””

o defines the thickness of the border that appears around the image
o a value of “0” turns the border off and is the default value.
o Values are presented in pixels

- cellspacing=””
o defines the distance between the cells, essentially the border thickness

present between cells
o a value of “1” is normal, the default value, and a value of “0”

eliminates the shadow in the border drawn
- cellpadding=””

o defines the distance between the text and the border of the cell
o a value of “0” places the text right on the border
o a value of “1” is normal and the default value

- bgcolor=””
o establishes the background color of the web page, default is white

- width=””
o defines the width of the column
o values possible

 percentage of the window expressed as 0% to 100%
 pixels expressed as integers

- height=””
o defines the height of the column
o values possible

 percentage of the window expressed as 0% to 100%

38 of 45

 pixels expressed as integers
- align=””

o determines where in the browser window that the table will be aligned
o values possible are “left”, “right”, and “center”
o the default value is “left”

- summary=””
o enables screen readers to read a summary of the table allowing the user

to determine whether or not the table is worth navigating through and
can skip if they so chose.

o Accessibility standards require the summary attribute to be included
o If the table is used for layout purposes the summary must describe the

table as used for layout purposes only.

<thead></thead>

- defines the header of a table
- important for the headings of each column
- must be nested within the <table></table> tags
- Code for this first in the table
- essential for accessibility standards, improves pagination and scrolling
- use <th></th> between tags and not <td></td> to define cells
- can have more than one row, use the <tr></tr> tag to add additional rows
Attributes
- align=””

o determines how the text in the cells will be aligned
o values possible are “left”, “right”, and “center”
o the default value is “left”

- valign=””
o determines the vertical alignment of the text in the cell
o values possible are “top”, “middle”, “bottom”, and “baseline”.

- bgcolor=””
o establishes the background color of the web page, default is the

bgcolor=”” specified in the <table> tag.
o use hexadecimal values

<tfoot></tfoot>

- defines the footer of a table
- important for footnotes with the data in the main body of the table
- must be nested within the <table></table> tags
- code for this second in the table
- essential for accessibility standards, improves pagination and scrolling
- use <td></td> between tags to define cells
- can have more than one row, use the <tr></tr> tag to add additional rows
- it may be omitted if now footer is necessary or table is used for layout

purposes
Attributes
- align=””

39 of 45

o determines how the text in the cells will be aligned
o values possible are “left”, “right”, and “center”
o the default value is “left”

- valign=””
o determines the vertical alignment of the text in the cell
o values possible are “top”, “middle”, “bottom”, and “baseline”.

- bgcolor=””
o establishes the background color of the web page, default is the

bgcolor=”” specified in the <table> tag.
o use hexadecimal values

<tbody></tbody>

- defines the main body of the table where the core of the data is presented
- important to separate the data presentation portion of the table from the header

and footer information to assist with accessing the data for alternative
browsers

- must be nested within the <table></table> tags
- code for this third in the table
- improves pagination and scrolling
- it may be omitted if table is used for layout purposes
Attributes
- align=””

o determines how the text in the cells will be aligned
o values possible are “left”, “right”, and “center”
o the default value is “left”

- valign=””
o determines the vertical alignment of the text in the cell
o values possible are “top”, “middle”, “bottom”, and “baseline”.

- bgcolor=””
o establishes the background color of the web page, default is the

bgcolor=”” specified in the <table> tag.
o use hexadecimal values

<tr> </tr>

- defines a row in a table
- must be nested within the tags <table></table>, <thead></thead>,

<tfoot></tfoot>, or <tbody></tbody>
- contains the tags <th></th> and <td></td> nested inside <tr></tr>
Attributes
- align=””

o determines how the text in the cells will be aligned
o values possible are “left”, “right”, and “center”
o the default value is “left”

- valign=””
o determines the vertical alignment of the text in the cell
o values possible are “top”, “middle”, “bottom”, and “baseline”.

40 of 45

- bgcolor=””
o establishes the background color of the web page, default is the

bgcolor=”” specified in the <table> tag.
o use hexadecimal values

- width=””
o defines the width of a row
o values possible

 percentage of the window expressed as 0% to 100%
 pixels expressed as integers

- height=””
o defines the height of the row
o values possible

 percentage of the window expressed as 0% to 100%
 pixels expressed as integers

<th></th>

- defines the table header for a column
- must be nested within the <thead></thead> tags
- can be nested within the <tr></tr> to create more than one row of header

information
- automatically formats all text as bold
Attributes
- same for <td></td>

<td></td>

- defines the table data cell for the table
- must be nested within the tags <table></table>, <thead></thead>,

<tfoot></tfoot>, or <tbody></tbody>
- can be nested within the <tr></tr> to create more than one row of table data

information
- essentially each “cell” within the table is defined by the information between

the <td> </td> tags.
Attributes
- align=””

o determines how the text in the cells will be aligned
o values possible are “left”, “right”, and “center”
o “justify” also a value but only works in some browsers
o the default value is “left”

- valign=””
o determines the vertical alignment of the text in the cell
o values possible are “top”, “middle”, “bottom”, and “baseline”.

- bgcolor=””
o establishes the background color of the web page, default is the

bgcolor=”” specified in the <table> tag.
o use hexadecimal values

- width=””

41 of 45

o defines the width of a row
o values possible

 percentage of the window expressed as 0% to 100%
 pixels expressed as integers

- height=””
o defines the height of the row
o values possible

 percentage of the window expressed as 0% to 100%
 pixels expressed as integers

- colspan=””
o defines the number of columns that the cell spans making it appear as

if the cells have merged within a row
o values possible

 integer values; 1, 2, 3, etc.
- rowspan=””

o defines the number of rows that the cell spans making is appear as if
the cells merged within a column

o values possible
 integer values; 1, 2, 3, etc.

- nowrap
o defines the line of text to complete one line without wrapping
o no values, the presence of the word in the attribute portion of the tag

turns the value from “off” or “false” to “on” or “true”

<caption></caption>

- defines a tables caption
- nested within the <table></table> tags
Attributes
- align=””

o determines how the text in the cells will be aligned
o values possible are “left”, “right”, and “center”
o “justify” also a value but only works in some browsers
o the default value is “left”

- valign=””
o determines the vertical alignment of the text in the cell
o values possible are “top”, “middle”, “bottom”, and “baseline”.

Form Elements
<form></form>

- defines a form for filling in fields on a web page
- contains the tags <input />, <textarea></textarea>, <select></select>,

<button></button>
Attributes
- action=””
- target=””
- method=””

42 of 45

o values possible
 get

• blah
 post

• blah
- name=””
- autocomplete
- enctype=””

<input />

- defines an input field in a form
- must be nested within the <form></from> tags
Attributes
- name=””

o defines the name of the input field, essential
o invisible to the user

- value=””
o defines the value present in the field at the time the form is drawn in

the browser
o visible to the user

- id=””
o defines the id for the form input field

- type=””
o defines the type of the input field in the form
o possible values

 password
• encrypts the text typed in the field and displays bullets

not the text typed
• additions

o size=””
 length of the field box in characters

o maxlength=””
 number of characters accepted by the

input field, visible or other invisible to
the user

 text
• defines on line of text for an input field
• additions

o size=””
 length of the field box in characters

o maxlength=””
 number of characters accepted by the

input field, visible or other invisible to
the user

o autocomplete
 checkbox

43 of 45

• defines the input field to be a check box and allows
more than one in a group to be checked

• additions
o checked

 pre-checks the box for the user and
maybe unchecked by user prior to
submitting the form

 radio
• defines the input field to be a radio button and allows

only one within a group to be selected
• additions

o checked
 pre-checks the box for the user and

maybe unchecked by user prior to
submitting the form

 button
• defines a button
• the text in the value=”” attribute determines the text

displayed on the button and the text length determines
the length of the button

 submit
• defines a button with the text submit
• required for a form to be submitted and an action to be

taken
 reset

• defines a button that resets the form back to the blank
default values or the values defined by the value
attribute for each <input /> defined

 file
•

 image
• as

<textarea></textarea>

- defines a multi-line textarea for an input field

<select />

- defines a drop down menu of items for a form input field
- options are defined with the <option /> tag
Attributes
- name=””

o names the input field, necessary for communication with the server
- size=””

o defines the number or rows visible when open
- multiple

o allows more than one choice in the menu list to be selected

44 of 45

<option />
- defines options that make up the list of choices in the menu
- must be within the <select> tag
Attributes
- value=””

o the text in the value attribute is the text that appears in the menu listing
- selected

o pre-selects one of the values in a list of choices

45 of 45

	Getting Started
	Content on a Web Page
	What do we know so far?

	Elements versus Attributes
	Text is not a simple matter of Typing
	Comment Tags are Essential
	A Word about Fonts
	The Anchor Tag
	The link to another web page on the same server
	The link to another web site
	The named anchor tag
	A general note about links

	The Image Tag is really a Link
	Different Image Types

	Tables Arrange the Text
	A Table of Data
	Laying it all out with Tables

	Hexadecimal Code
	Rule of 51’s
	Accessibility for Web Sites
	Advanced Topics
	Example HTML File – Simple
	Example HTML File – Lists
	HTML Code Listing

